MMAT 5340 Assignment \#9
 Please submit your assignment online on Blackboard Due at 23:59 p.m. on Tuesday, Apr 9, 2024

1. Suppose we have a box, and N balls in it. Initially, some of these balls are black and the rests are white. Now we repeatedly apply the following procedure:

- Randomly choose one of the N balls with equal probability and take it out.
- If the chosen ball is black, we put a white ball into the box.

If the chosen ball is white, we put a black ball into the box.
Let X_{n} be the number of black balls in the box after repeating the above procedure for independently n times. So we know $X=\left(X_{n}\right)_{n \geq 0}$ is a Markov chain with state space $S=\{0,1, \cdots, N\}$ and the transition matrix P, which is given by

$$
P(x, y)= \begin{cases}1-\frac{x}{N}, & y=x+1 \tag{1}\\ \frac{x}{N}, & y=x-1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Prove that the Markov chain X is irreducible.

By the theorem proved in class, there exists a stationary distribution

$$
\mu=(\mu(0), \mu(1), \cdots, \mu(N)) .
$$

(b) Recall that the stationary distribution μ satisfies $\mu^{\top} P=\mu^{\top}$, we obtain $N+1$ linear equations $\mu(n)=\sum_{k=0}^{N} \mu(k) P(k, n)$, for $n=0,1, \cdots, N$.
Please simplify these equations for the transition matrix defined by (1).
(For example, for $n=0$, the linear equation is written as $\mu(1) / N=\mu(0)$.)
(c) Prove that $\mu(2)=\frac{N(N-1)}{2} \mu(0)$ and $\mu(x)=\binom{N}{x} \mu(0)$ for all $x \in S$.
(d) Compute the stationary distribution μ.
2. Consider the simple random walk $X=\left(X_{n}\right)_{n \geq 0}$ with state space \mathbb{Z} (the set of all integers) and transition matrix P, which is given by

$$
P(i, j)= \begin{cases}1 / 2, & j=i+1 \text { or } j=i-1 \\ 0, & \text { otherwise } .\end{cases}
$$

If π is a stationary distribution of X, then
(a) Prove that $\frac{\pi(x-1)+\pi(x+1)}{2}=\pi(x)$ for all $x \in \mathbb{Z}$.
(b) Let $u(x)=\pi(x)-\pi(x-1)$ for $x \in \mathbb{Z}$ and prove that $u(x)=C$ for some constant C for any $x \in \mathbb{Z}$.
(c) Prove that $\pi(x)=a x+b$ for some constant a, b.
(d) Prove that X does not have a stationary distribution.
3. Consider a Markov chain $X=\left(X_{n}\right)_{n \geq 0}$ with state space \mathbb{N} (the set of all nonnegative integers) and transition matrix P, which is given by

$$
P(j, k)= \begin{cases}1, & k=j-1, j \geq 1 \\ 0, & k \neq j-1, j \geq 1 \\ \nu(k), & k \in \mathbb{N}, j=0\end{cases}
$$

where $\nu=\{\nu(n)\}_{n \geq 0}$ is a probability measure on \mathbb{N}, i.e. $\nu(n) \geq 0$ for all $n \geq \mathbb{N}$, and $\sum_{n=0}^{\infty} \nu(n)=1$.
(a) Prove that X is irreducible if and only if $\nu(\{n, n+1, \cdots\})>0$ for any $n \in \mathbb{N}$, where $\nu(\{n, n+1, \cdots\})=\sum_{k=n}^{\infty} \nu(k)$.
(b) Prove that 0 is recurrent.
(c) Prove that the measure defined by $\mu(n)=\nu(\{n, n+1, \cdots\}), n \in \mathbb{N}$ is stationary, i.e. $\mu^{\top} P=\mu^{\top}$.

