MMAT 5340 Assignment #9 Please submit your assignment online on Blackboard Due at 23:59 p.m. on Tuesday, Apr 9, 2024

- 1. Suppose we have a box, and N balls in it. Initially, some of these balls are black and the rests are white. Now we repeatedly apply the following procedure:
 - Randomly choose one of the N balls with equal probability and take it out.
 - If the chosen ball is black, we put a white ball into the box.
 - If the chosen ball is white, we put a black ball into the box.

Let X_n be the number of black balls in the box after repeating the above procedure for independently *n* times. So we know $X = (X_n)_{n\geq 0}$ is a Markov chain with state space $S = \{0, 1, \dots, N\}$ and the transition matrix *P*, which is given by

$$P(x,y) = \begin{cases} 1 - \frac{x}{N}, & y = x + 1\\ \frac{x}{N}, & y = x - 1\\ 0, & \text{otherwise.} \end{cases}$$
(1)

(a) Prove that the Markov chain X is irreducible.By the theorem proved in class, there exists a stationary distribution

$$\mu = (\mu(0), \mu(1), \cdots, \mu(N)).$$

- (b) Recall that the stationary distribution μ satisfies $\mu^{\top} P = \mu^{\top}$, we obtain N + 1 linear equations $\mu(n) = \sum_{k=0}^{N} \mu(k) P(k, n)$, for $n = 0, 1, \dots, N$. Please simplify these equations for the transition matrix defined by (1). (For example, for n = 0, the linear equation is written as $\mu(1)/N = \mu(0)$.)
- (c) Prove that $\mu(2) = \frac{N(N-1)}{2}\mu(0)$ and $\mu(x) = {N \choose x}\mu(0)$ for all $x \in S$.
- (d) Compute the stationary distribution μ .
- 2. Consider the simple random walk $X = (X_n)_{n \ge 0}$ with state space \mathbb{Z} (the set of all integers) and transition matrix P, which is given by

$$P(i,j) = \begin{cases} 1/2, & j = i+1 \text{ or } j = i-1\\ 0, & \text{otherwise.} \end{cases}$$

If π is a stationary distribution of X, then

- (a) Prove that $\frac{\pi(x-1)+\pi(x+1)}{2} = \pi(x)$ for all $x \in \mathbb{Z}$.
- (b) Let $u(x) = \pi(x) \pi(x-1)$ for $x \in \mathbb{Z}$ and prove that u(x) = C for some constant C for any $x \in \mathbb{Z}$.
- (c) Prove that $\pi(x) = ax + b$ for some constant a, b.

- (d) Prove that X does not have a stationary distribution.
- 3. Consider a Markov chain $X = (X_n)_{n \ge 0}$ with state space \mathbb{N} (the set of all nonnegative integers) and transition matrix P, which is given by

$$P(j,k) = \begin{cases} 1, & k = j - 1, \ j \ge 1, \\ 0, & k \ne j - 1, \ j \ge 1, \\ \nu(k), & k \in \mathbb{N}, \ j = 0. \end{cases}$$

where $\nu = {\nu(n)}_{n\geq 0}$ is a probability measure on \mathbb{N} , i.e. $\nu(n) \geq 0$ for all $n \geq \mathbb{N}$, and $\sum_{n=0}^{\infty} \nu(n) = 1$.

- (a) Prove that X is irreducible if and only if $\nu(\{n, n+1, \cdots\}) > 0$ for any $n \in \mathbb{N}$, where $\nu(\{n, n+1, \cdots\}) = \sum_{k=n}^{\infty} \nu(k)$.
- (b) Prove that 0 is recurrent.
- (c) Prove that the measure defined by $\mu(n) = \nu(\{n, n+1, \cdots\}), n \in \mathbb{N}$ is stationary, i.e. $\mu^{\top} P = \mu^{\top}$.